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For linear Fourierian, quasi-one-dimensional heat conduction in a stack of homogeneous 
layers, it is shown that the temperature decay constants, %, behave asymptotically as n-2. This 
yields a considerable lowering of computer time at a satisfactory accuracy level. A numerical 
example is given. The matching problem of the alternative infinite series containing terms such as 
e -t/~ and e -a/t, respectively, is also considered, and the equivalence between surface excitation 
and a volume excitation is demonstrated. 

The temporal and spatial temperature behaviour after the pulsed or step-like 
excitation of layered materials contains useful information on the thermophysical 
material properties, as well as on the presence of subsurface defects or 
delaminations, on the interface quality, etc. [1]. In semiconductor device analysis, it 
provides interesting alternatives to electrical and optical investigations [2], and it is 
important for the laser heating of slabs [3]. 

Experimentally, one may excite the surface with a flash lamp or laser beam and 
observe the temperature of the rear-face or of the front surface (pulsed 
photothermal inspection [1]. In bipolar semiconductor devices, heat is generated 
mainly at the p -  n junction, which leads to a similar temperature history [2]. 

Mathematically, one has to solve the heat diffusion equation in each layer and to 
match the solutions at the interfaces (we will not consider a moving boundary 
condition; see [3] and references (therein). Although one can always apply 
numerical methods (this will be necessary when the temperature-dependence of the 
material constants comes into play and variational methods are not applicable), 
analytical solutions are preferable, as they provide more insight into many details of 
the processes involved. 

Analytical solutions of the linear heat diffusion equation in one to three spatial 
dimensions for a stack of N homogeneous layers (or even more complicated 
compositions, when only the interfaces are rectangular to each other) can be 
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obtained by standard methods (e.g. [1, 2] and references therein). Within Fourier's 
method of separation of variables, one obtains an infinite series of exponential 
decay terms (after Dirac pulse excitation): 

O(x, t) = ~ F.(x)e -'/~" (1) 
~=0 

(in one dimension, to which we confine ourself in this paper), with prefactors F,(x) 
and decay constants z,, depending upon the boundary conditions at the interfaces 
and sample surfaces, as well as upon the excitation location. (The infinitely many 
pictures in two confronted mirrors comprise an optical analogue to this series [4]). 

The decay constants are the reciprocal eigenvalues of a Sturm-Liouville operator 
and tbrm an infinite sequence of decreasing values with limit zero (cf. below); the 
number of trigonometric terms in the transcendent eigenvalue equation increases as 
2 N [2]. The Fourier analysis in terms of diffusion modes is in general anharmonic [4]. 

Consequently, the number of terms in (1) to be accounted for increases rapidly 
with decreasing time interval between excitation and observation. On the, other 
hand, the alternative expansion of O(x, t) with respect to terms such as e-a# [5] may 
converge well only for very short times (cf. below). 

Thus, the goal of this paper is twofold. First, in section 1, we derive our 
observation z, ~ n-2 as n ~ ~ [6], providing a useful tool for calculating high-n 
terms in (1) without solving the eigenvalue equation. Secondly, in section 2, we 
consider the asymptotic behaviour of temperature and effusivity for small and large 
times, and attempt to connect the two series mentioned above, i.e. to estimate a cut- 
off time t c, above which (1) is more useful, while below it the other series is better. 
Finally, section 3 presents some numerical results and summarizes this paper. 

For the sake of simplicity and comparison with [1], our concrete calculations 
concern the front-surface temperature monitoring of quasi-one-dimensional two- 
and three-layer materials with perfect interfaces, but the generalization to other 
cases is straightforward (in order to apply Fourier's method of separation of 
variables directly in the case of surface excitation, we show in Appendix A how the 
latter can be converted into a "volume" excitation). 

1. Asymptotics of temporal decay constants 

Let us consider a quasi-one-dimensional stack of N homogeneous layers with 
temperature-independent thermal coefficients. Let heat be generated by absorption 
of a Dirac pulse of heat flux onto one end of the stack, while the other end is 
thermally isolated. The interfaces may have no thermal resistance. (For a discussion 
of these simplifying assumptions, cf. [2, 7]. 

Then, for the whole stack we have the diffusion equation for the temperature: 
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O(x, t) = 1 (KO')' + Q 6 ( x ) 6 ( t )  (2) 
Qc 

( = O/Ot, ~ = O/Ox), where the density 0, heat capacity c and thermal conductivity 
K are step-wise constants. The surface excitation is converted into a volume term 
(see Appendix A). Separation of variables, O(x, t) = X ( x ) T ( t ) ,  leads to 

T QeX (KX')' = const z (3) 

and thus to T(t)= e -t/~ (the integration constant can be incorporated into X(x) .  

and to the Sturm-Liouville eigenvalue problem [8]: 

_ ~ ( K X ' )  p = 1_ X ( x )  (4a) 
Oc z 

X'(O) = X ' ( L  ) = 0 (4b) 

Now the asymptotics of eigenvalues 1/z is well known when the coefficient o f  X "  

is constant [8]. This can be achieved by the Sturm-Liouville transformation, which 
requires, however, that the coefficients in (4a) are twice continuously differentable. 
However, this condition can be weakened if the first derivative is retained after 
transformation (H= 1 in [8], p. 61) Let 

= h(x), X ( x )  = .~(~). (5) 

Then, (4a) becomes 
1 1 

- -  [ -  •"Kh '2 - (Kh') '( .7'  + ~)] = - Z (6) 
Oc z 

Obviously, the coefficient of  ~=" becomes - I when 

h ( x )  = ec  dx '  = ~ (7) 

o o 

where ~ = K/oc  is the (temperature) diffusivity. 
Finally, 

d~(h 1 
='" - ' ( ~ ) ) ( ~ ' +  ~) = T 

- _  - - ~" ( 8 )  

where e = x / / ~ c  is the effusivity. 
The stack total length L is transformed to the !-interval [h(0), h(L)] ,  i.e. 

L 

Lr = h(L) -h(O) '=  ~ ,=x x ~ ,  ,=1 r/i = r/ 

o 

(9) 

J. Thermal Anal. 34, 1988 



322  E N D E R S :  H E A T  C O N D U C T I O N  

Thus. the asymptotic behaviour of the decay constants [8] is given by 

+ as n ~ o o  (10) 
Tn 

This is the desired relation. We have observed it for the three-layer model (living 
2 2 human skin) in [1], for which z. = r/a/y . , and hence 

y. --*nn/cox = 2.92n (co I = r/1/r/3"~-r/Z/r/3"+- 1) (11) 

The physical background of  this asymptotics is simple: with increasing order n, 
the spatial variation of the diffusion modes becomes faster and faster (increasing 
number of  nodes, i.e, zeros of F.(x) in (1)', and the nature of diffusion will be 
dominated by these volume variations against those imposed by the boundary 
conditions. In other words, the Fourier series becomes increasingly harmonic (of. 
[4, 81). 

It is worth noting, however, that there remains a finite difference between the exact 
eigenvalues and their asymptotic values (10) (see Appendis B). Since the prefactors in 
(1) react quite sensitively to slight changes in z. (cf. Table 2 below), the application of 
this asymptotics has to be done with care. 

2. Temperature behaviour for very small and very long times. 
Series cut-off and matching 

For a two-layer system, the Laplace-transformed solution of (4) for the front- 
surface temperature (x = 0) reads 

1 xlch(colr/2 ~s)+x2ch(co2r/2 xcffs) (12) 02(S) 
e l ~  xxsh(cot,2 x/s)+ x2sh(co2,2 x/s) 

with 

X 1 = e l 2 +  1, X 2 = e 1 2 - - 1 ,  e l 2  = e l / e 2 ,  

(13) 

o l  = rh2+ l ,  092 = r/12 - 1 ,  r/12 = rh/r/2 

(cf. Eq. (20) in [1] with 1/h =0). Hence [5]: 

2 

lim 0 2 ( t  ) = limsO2(s) = 1/ ~ QiciLi (14) 
t~oo s - O  i=1  

in agreement with Eq. (21) in [1]; because of the thermal isolation, (14) represents the 
uniform temperature rise per unit excitation strength after long times (t >> zt, where 
z~ = r/22/y2 is the largest decay constant). Further, 
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lim 02(0 = lira S6z(S ) ~ lira s l / z =  
f ~ O  $--~ cJO S"b O0 

corresponding to the Dirac pulse shape of excitation. 
For the apparent effusivity [1]: 

e(t) = 1/O(t) ~ t  

we obtain 
lim e(t) = 0 
f---~ OO 

(15) 

(16- 

(17) 

lira e(t) = e 1 (18) 
t--*O 

(applying (15) to 02(l ) x//t and using the convolution theorem [5]; cf. also the square- 
root behaviour in (15)). 

It turns out that (18) is a convenient measure for testing the validity of cut-offs of (1), 
as well as that of applying (10); for small times, e(t) must go over into a plateau (cf. 
Figs 4, 8, and 10 in [1], and below). 

On the other hand, as pointed out by Balageas et al. [1], the number of terms needed 
in (1), nmax, increases rapidly with decreasing time values after excitation, tmi.- In fact, 
Eq. (10) shows that the decay constantsdecreaserather slowly, and tmi . >> Zm~ implies 

nma x >~ r//~ ~ (19) 

For instance, the calculation ofe(t) for the three-layer model in [1] up to tmi ~ = 10- 2 s 
requires more than 200 terms. 

Here, it is favourable to'use the alternative form of back transformation of (12): 

0 2 ( S  ) - -  1 [1 +x21(e-2nlds--Fe-2n24s-)+e-2(nl+n2)4s]/ 
el ,,fi 

[ 1 - -  X 21 ( e -  2r/l~/~--- e - 2~2 .A- )  _ e -  a t , .  + n~).A- ] = 

= 1 
e I N/~ [ 1 "1- X 21 (e- 2,1,A-+ e - 2,2,A-) + e-  2(,i +,2),/~- ] 

X ~, [x2x(e-2"l~-e-2"zd~)+e-2("l+"2),ff]" 
n = O  

(20) 

with Xzl = x2/xl  (Ix2xl < 1). This series can be transformed term by term [5], giving 

1 
02(0 - I (1 + 2xz xe- ~/' + 2e- t,, +,2)2/r + . . . )  (21) 

el x / ~  
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The calculation of the subsequent terms is increasingly cumbersome, but 
straightforward. 

(21) immediately yields the asymptotic behaviour for t n0 ,  (15) and (18). In 
particular, the plateau in e(t) reaches up to a time of order r/2 (cf. Fig. 10 in [1]). The 
series (21) and its generalizations for more layers simplify when there are thick layers 
in the stack having large t/values (see Eq. (9)). 

One may now connect series (1) and (20), in order to solve the cut-off problem for 
them. This means that for t <~ tc one uses (20), and for t > tc (1). (This split-offresembles 
Ewald's method of calculating lattice sums [9].) When r/2 >> r/l, one may choose 
tc = r/2. If  to> tmi, in (19), the latter is weakened to 

nma x ~ r//~ ~ = q/n~h (22) 

For the example mentioned after (19), this brings a reduction of nm~x by a factor of 

x / ~ ,  which results in a considerable lowering of the computer time. Of  course, in 
special eases, t~ may be chosen even more favourably. 

3. Numerical results and discussion 

We have tested the validity of  the approximations proposed above by means of  the 
three-layer model in [1]. The model parameters are listed in Table 1. For the short- 
time calculations t ~< t c, we have expanded 

O(s) = 1 C1(e12S2S3 q- e13C2C3) q- S1(C2S3 4- e23S2C3) (23) 
e I x/-s $1(e12S2S3 + e1~C2C3) + C1(C2S3 + e23S2C3) 

with eli = ei/ej, Si = sh(tll x/~s) and Ci = ch(~i x/~). (The corresponding series (1) is 
given by Eq. (26) in [1]). Due to r/2 ~> t/2 >> r/~ (see Table 1), the series corresponding to 
(20) simplifies to 

@(t) - 1 (1 + 2x ,  le-n?l, + 2x21e- 4rl~/td I- 
e x x / ~  

.q_ O~31 o -  9tll/t ..t- ")~r o -  (r/l + r/z)z/t) (24) 
~---~, ~ ~ ~'~ 21 ~ 

Table  1 Three-layer  mode l  in [1] (Table 1; Stolwijk and  H a r d y  [10] model  for l iving h u m a n  skin) 

Layer  L i, • el, r/i, 
i l0  -4  m 10 -8 m s s -1 k J / m  -2 s -1/2 K - 1  sl/2 

1 1 4.9 .95 .452 

2 7 9.7 1.34 2.25 

3 10ft' 7.9 .60 35.5 

~ D. L. Balageas,  priv. commun.  
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with x41 = x41xl = -0.170 and x21 = X 2 / ) r  1 = 0,381. tc = 2r/2 is chosen, which 
guarantees (24) as a good approximation. 

Figure 1 displays our results for e(t); the front-surface temperature history is less 
sensitive to the calculation details; we recovered Fig. 9 of [1]. We used 20 exact 
eigenvalues in (1) with a total of 250 terms at tc (cf. Table 2). The step ofe(t) at tc is 
actually less than 10 per cent (the logarithmic scale overdraws it somewhat). 

A 

0 .1090 -  

- 0.0223 i 

- 0.0767 

- 0.178( I { I I ~ b 
10 -2 10 -1 t c 1 10 10 2 

t , s  

Fig. 1 History of the appearent effusivity, e(t), after Dirac-pulse excitation of unit strength (cf. text). 
(a) series matching ~tt tc = 21"/2 = 0.205 s; (b) using only (1) with 250 terms 

'fable 2 Convergence of eigenvalues and prefactors in (1) towards their asymptotic values for the three- 
layer model in (1) (parameters given in Table I) 

n 

exact asympt, exact asympt. 

14 41.172 40.881 1.4385 1.605 
15 43.879 43.801 1.5679 1.5808 
16 46.61 46.721 1.334 1.354 
17 49.434 49.641 .9853 1.0483 
18 52.348 52.561 .7197 .7737 
19 55.323 55.481 .5567 .5772 
20 58.334 58.401 .4659 .4648 

100 292.11 292.005 - -  - -  

In summary, satisfactory results can be obtained with small effort in comparison 
with the standard series. Moreover, the asymptotics of the decay constants enables 
one to perform (I) as a lattice sum, which lifts the matching problem. This will be 
described elsewhere. 
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Appendix A. Conversion o f  surface excitation into volume excitation 

Surface excitation is usually incorporated in the boundary conditions (e.g. [1]). 
This may prevent the direct application of Fourier's method of separation of 
variables, for which it is more convenient to have the excitation term in the balance 
(diffusion) equation, where it may be called volume excitation. For this, and in order 
to prove that the asymptotics of eigenvalues is independent of the surface excitation 
too, we show how the inhomogeneity of the boundary condition can be removed by 
converting the surface excitation into a volume excitation. Consider for simplicity the 
problem 

1 0  = O " + f ( x ,  t )  (A. la)  

- KO'(O, t) = b(t),  O'(L, t) = O, O(x, 0) = 0 (A. lb) 

According to Duhamel's theorem [11], this is connected with the simpler one 

1 . 
- T = T" + f ( x ,  u) 

by 

- K T ' ( O , t ; u )  = b(u), T ' ( L , t ; u )  = O, T(x ,  0; u) --- 0 

(A. 2a) 

(A. 2b) 

t 

O(x,t) = - ~  T ( x , t - u ; u ) d u  (A. 3) 

0 

Hence, it is sufficient to investigate the correspondence between b(u) andf(x,  u) in 
(A. 2). 

We solve (A. 2) by Laplace transformation and obtain 

T(x , s ;  u) = A g " / ~ +  Be -~'AT~ (A. 4a) 

A = B -  ~r 

B = zl/2b(u)/(1-e-2LVs/~)gs 3/2 

with (i) for f = 0 :  

and (ii) for b = O: 

o :f A = B + ~ f ( x ,  u)ch x dx  = Be-  2L ~/s/K 

L 

(A. 4b) 

(A. 4c) 
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Consequently, b(t) in (A. lb) can be replaced by f ( x ,  t) = 5(x)b( t ) /Kin  (A. la). This 
is the desired conversion. 

Appendix B. Asymptotics  o f  eigenvalues 

Consider the eigenvalue equation for a two-layer system ([1], Eq. (22) with R = 0), 

x 1 sin ((.DI?)+X 2 sin (092?) = 0 (B. 1) 

Writing 

we obtain 

~. = 7~ ~ + 5.1o91 = mz/~ol + 5,,1~1 (B. 2) 

( -  1)"x 1 sin 5, + x 2 sin o 2  (nu + 5,) = 0 (B. 3) 
(.o 1 

5, = 0 is a solution of(B. 3) only if no~2/~o 1 is an entire, but in general 5, will be finite. 
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Zusmmneafm~stmg - -  Es wurde gezeigt, dab bei quasi-eindimensionaler, linearer Fourier-Wfirmeleitung in 
einer Packung von homogenen Schichten sich die Temperaturd~npfungskonstante z, asymptotisch als 
n -2 verh~ilt. Dies erm6glicht bei Beibehaltung einer befriedigenden Genauigkeit eine erhebliche 
Einsparung von Computerzeit, wofiir ein numerisches Beispiel angefiihrt wird. Es wurde das 
Anpassungsproblem fiir alternierende unendliche Reihen mit e -#' bzw. e -a/t untersucht und die 
~quivalenz von Oberfl/ichen- und einigen Volumenanregungen dargestellt. 
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Pe31oMe  - -  B cayqae  JIHHe~HO~, KBa3HO/IBoMepHo~ TeII.~oIIpOBO~ItOCTII IlaKeTHOFO n a 6 o p a  FOMOFeHHbIX 

C.rlOeB 6bDIO HOKa3aHO, qTO KOHCTaHTbI TeMIIepaTypHOFO 3aTyXaHHJl (Zn) Be~yT ce6g KaK aCHMIITOMbI n - 2. 

2~TO nprmo~HT K 3HanMTe~btiOMy i ionnxeHmo MalIIrIHHOFO BpeMeHH npn  ~OCTaTOqHOM ypoBae 

TOWaOCm. HpnBe~len nHC~OBO~ rlpHMep. I I p n  a t o m  ym~TblBa~acb npo6~Ie i a  cor~IacoBamIa OT60pOqHbIX 

6eCKOHeqHblX pfljIOB, cojlepxaI11Hx TepMbI e - t / '  H e-al~ H llOKa3aHa paBHOtleHHOCTb Mexc~y IIOBepXHOCTbIO 

11 HeKOTObbIM O6"beMHbIM Bo3~yxC~eHIteM. 
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